
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2016-06-01

Machine Learning for Disease Prediction
Abraham Jacob Frandsen
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mathematics Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Frandsen, Abraham Jacob, "Machine Learning for Disease Prediction" (2016). All Theses and Dissertations. 5975.
https://scholarsarchive.byu.edu/etd/5975

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5975&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F5975&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F5975&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5975&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F5975&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarsarchive.byu.edu%2Fetd%2F5975&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/5975?utm_source=scholarsarchive.byu.edu%2Fetd%2F5975&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


www.manaraa.com

Machine Learning for Disease Prediction

Abraham Jacob Frandsen

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Jeffrey Humpherys, Chair
Tyler Jarvis

C. Shane Reese

Department of Mathematics

Brigham Young University

June 2016

Copyright c© 2016 Abraham Jacob Frandsen

All Rights Reserved



www.manaraa.com

abstract

Machine Learning for Disease Prediction

Abraham Jacob Frandsen
Department of Mathematics, BYU

Master of Science

Millions of people in the United States alone suffer from undiagnosed or late-diagnosed
chronic diseases such as Chronic Kidney Disease and Type II Diabetes. Catching these
diseases earlier facilitates preventive healthcare interventions, which in turn can lead to
tremendous cost savings and improved health outcomes. We develop algorithms for predict-
ing disease occurrence by drawing from ideas and techniques in the field of machine learning.
We explore standard classification methods such as logistic regression and random forest, as
well as more sophisticated sequence models, including recurrent neural networks. We focus
especially on the use of medical code data for disease prediction, and explore different ways
for representing such data in our prediction algorithms.

Keywords: preventive healthcare, disease prediction, chronic diseases, machine learning,
sequence classification, recurrent neural networks, ICD-9 codes, survival analysis



www.manaraa.com

Acknowledgments

I thank Dr. Jeffrey Humpherys for his tireless efforts to procure data as well as the many

ideas and nuggets of wisdom imparted to me. I thank the BYU Department of Mathematics

for its financial support, which has allowed me to enjoy the student lifestyle far longer than

most are able. I thank my parents and siblings for their encouragement and support.



www.manaraa.com

Contents

Contents iv

List of Tables vi

List of Figures vii

1 Healthcare, Data, Analysis 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Medical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Machine Learning in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Classification 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Linear Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Decision Trees and Random Forests . . . . . . . . . . . . . . . . . . . . . . . 32

3 Sequence Data 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Sequence Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Experiments 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



www.manaraa.com

4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Disease Prediction Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 57

v



www.manaraa.com

List of Tables

1.1 Selection of ICD-9 diagnosis codes. The ‘x’ character indicates a wildcard

that may be replaced with additional digits. Note the hierarchical nature of

the numerical codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 ICD-9 code descriptions associated with a selection of topics recovered by a

LDA topic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 ICD-9 codes associated with CKD and DM. . . . . . . . . . . . . . . . . . . 48

4.2 E1 results. The AUC scores of various models for the disease prediction task

using only ICD-9 diagnosis code data. . . . . . . . . . . . . . . . . . . . . . . 50

4.3 E1 results. Hyperparameters for the best classifiers. . . . . . . . . . . . . . . 52

4.4 E2 results. AUC scores for RNN+CCS classifier in the inter-population pre-

diction experiment for both CKD and DM. . . . . . . . . . . . . . . . . . . . 53

4.5 E3 results. AUC scores for the RNN+CCS classifier over a variety of followup

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



www.manaraa.com

List of Figures

2.1 Decision boundaries and level sets for a classification problem with three labels. 16

2.2 Plots of φs, φh, and φl as defined by squared, hinge, and logistic loss, respectively. 23

2.3 ROC curves and AUC scores for a good classifier (blue) and a poor classifier

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 A logistic regression classifier together with the data on which it was trained. 30

2.5 A simple decision tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Graphical representation of a linear-chain CRF. . . . . . . . . . . . . . . . . 40

3.2 A graphical depiction of a recurrent layer. . . . . . . . . . . . . . . . . . . . 43

4.1 E1 results. ROC curves for best LR, RF, CRF, and RNN classifiers. . . . . . 51

4.2 E2 results. Performance of RNN+CCS classifier in the inter-population pre-

diction experiment for both CKD and DM. . . . . . . . . . . . . . . . . . . . 52

4.3 E3 results. AUC scores for CKD and DM over several followup times. . . . . 53

vii



www.manaraa.com

Chapter 1. Healthcare, Data, Analysis

1.1 Introduction

Healthcare is big business. In 2013, healthcare spending in the United States accounted for

17.1 percent of the gross domestic product, or $9,086 per capita [1]. Healthcare consumption

in that year included an average of four physician visits and 2.2 regularly taken prescription

drugs per US resident, as well as notably high use of diagnostic imaging technologies (such as

MRI machines and CT and PET scanners). On the other hand, satisfaction with the health-

care system has been consistently low in the US as compared to other wealthy countries,

and this is due more to perceived availability of top-quality care than to the most recent

healthcare experience [2]. With so much money on the line, so many dissatisfied consumers,

and human life and health hanging in the balance, it seems there is a great need for problem

solvers in healthcare.

One idea for improving healthcare is to place more emphasis on prevention and less on

treatment ; the former is proactive while the latter is reactive. Not every health issue is

preventable, but in many cases, early intervention can lead to better health outcomes and

lower costs. One of the key elements of preventive healthcare is the disease screen. Through

such screening, diseases can be diagnosed while still in the early, treatable stage. However,

it is not feasible for everyone to get screened for every possible disease. A better solution

is to have a cheap, scalable, and reliable means of measuring disease risk and predicting

disease occurrence. Healthcare providers or insurers could then use this predictor to identify

high-risk individuals and recommend tests or other interventions.

Machine learning algorithms built on routinely collected medical data have the potential

to build just such a system. In this work, we discuss and test several computational methods

to this end. As a case study, we focus on chronic diseases, especially Chronic Kidney Disease

and Diabetes Mellitus, which we now review.

1



www.manaraa.com

1.1.1 Chronic Diseases. Chronic diseases are diseases that persist over a long period

of time, e.g. above three months. Examples include heart disease, cancer, and respiratory

conditions. Chronic diseases are a leading cause of death in high-income countries, and their

treatment is connected to three fourths of US healthcare spending [3]. According to the

Center for Disease Control and Prevention, however, these costly and prevalent diseases are

also among the most preventable [4]. It is plausible, then, that early detection or prediction

of chronic diseases can impact a great number of people and reduce the incidence and cost

of these diesases.

Chronic Kidney Disease (CKD) is a chronic disease in which kidney function deteriorates,

allowing blood waste to accumulate and damage the body. The disease progresses gradually,

and people with the early stages often don’t experience noticeable symptoms. However, if left

untreated, the disease progresses to kidney failure, at which point the only treatment options

are regular and costly dialysis, or kidney transplant [5]. CKD can be detected through blood

and urine tests, but these are not routine for everyone. Given that more than 20 million

US adults are estimated to have some stage of CKD, a great many people could potentially

benefit from these diagnostic tests. A disease prediction algorithm could be of great help in

identifying high-risk individuals.

Diabetes Mellitus (DM), or Type II Diabetes, is a chronic disease in which blood glucose

levels are excessively high due to defective insulin production or action. DM can lead to a

host of other health problems, including heart disease, hypertension, blindness, lower limb

amputation, and kidney disease; it is in its own right a leading cause of death in the US.

An estimated 25 million people in the US had diabetes in 2010, including 26.9% of people

65 years old and up, and a full seven million were estimated to be undiagnosed [6]. A

disease prediction system for DM could help identify many of these undiagnosed individuals,

allowing them to begin preventive measures such as blood pressure and glucose level control.

2



www.manaraa.com

1.2 Medical Data

Healthcare has long been a data-rich field. With so many moving parts, healthcare providers

and insurers have no shortage of variables to measure. The captured data have many im-

portant uses. They keep tabs on costs and billing. They track the activity of hospitals and

outpatient facilities. Crucially, the data record the health states of people at a microscopic

and macroscopic level. It is hard to overstate the importance of data in healthcare, especially

when it comes to improving healthcare systems. Although in this work we focus on using

medical data in disease prediction, there are many other facets of healthcare that can be

enhanced and even revolutionized through intelligent use of data.

Obtaining access access to healthcare data is often a fraught endeavor. Privacy laws and

business concerns set a host of hurdles that must be cleared before data can be shared. Un-

fortunately, this can halt the progress of researchers unaffiliated with insurance companies or

hospital systems. Forging academic relationships with healthcare and insurance institutions

is a vital step toward data access. The author of the present work learned this first hand,

and his adviser all the more. Despite these difficulties, the potential rewards of better un-

derstanding and utilizing medical data to improve healthcare far outweigh the frustrations

of data access.

1.2.1 Data Capture. There are various systems in place for capturing medical data.

Modern healthcare systems use Electronic Health Record (EHR) tools for systematically and

digitally storing a wide range of data, including patient demographics and medical history,

lab results, physicals, radiology images, and more. EHR systems also facilitate data access

and visualization, allowing doctors and patients to better inform themselves. Although these

records only capture the activities that occur within a particular facility or set of facilities,

they provide a vivid account of an individual’s health state during his visits to the hospital

and other care facilities.

Medical insurance claims form another rich repository of healthcare data. Claims data

3



www.manaraa.com

center on individuals enrolled in the insurance policy and their interactions with the health-

care system. These records typically include basic demographic information about patients,

along with diagnoses, procedures, medication, inpatient and outpatient visits, and associated

costs. Because insurance claims data are so patient-centric and capture patient healthcare

activity across a variety of hospitals, facilities, and pharmacies, they paint a rather compre-

hensive picture of an individual’s medical history and current health state. On the other

hand, claims data often lack the fine-grained detail and rich clinical information found in

EHRs.

We review a few different types of medical data found in EHRs and insurance claims

records.

1.2.2 Simple Variables. Much of healthcare data consists of simple numerical and cat-

egorical variables. These include demographic variables such as age, sex, and ethnicity.

Health variables such as height, weight, blood pressure, pulse, and many others are also

straightforward. These types of simple data are suited for standard analytical and statistical

methods (such as linear or logistic regression). To stop with just the simple variables, how-

ever, would be to miss out on potentially valuable insight provided by more complex sources

of data.

1.2.3 Image Data. Image data in healthcare come primarily from radiology. Imaging

technologies include X-ray, ultrasound, CT, PET, and MRI. These techniques produce im-

ages of internal tissues. The images are then typically examined by a human with expertise

in visual diagnostics, and the results are passed on to the doctor and patient. Using image

data for computational analysis is a nontrivial task. Developing algorithms that can extract

meaningful semantics from digital images is an active and ongoing field of research within

computer vision and machine learning. Techniques from these fields are required to fully tap

the utility of medical imaging data.

4



www.manaraa.com

1.2.4 Freetext Data. A large component of medical data is found in free text fields.

Freetext data can include nurse or doctor notes regarding any number of areas surrounding

a patient visit. They may consist of incomplete sentences, or detailed paragraphs; they may

contain shorthand specific to a particular nurse, incoherent grammar, typos, and illegible

scrawl. Despite their messy nature, freetext medical data can include vital information

regarding patient health and experience with the healthcare system, and are therefore an

important data source.

Although humans are adept at making sense of freetext, from a computational perspec-

tive, freetext data can be very difficult to use. Software built to utilize freetext may require

sophisticated computer vision for recognizing the handwritten text and extensive natural

language processing for extracting the meaning of the text. Although we do not deal with

it in this work, the problem of utilizing freetext medical data in machine learning methods

is an important one.

1.2.5 Coded Data. Many aspects of an individual’s interactions with the healthcare

system are captured in various types of coded data, which are ubiquitous in healthcare data

records. Such coded data are naturally fit for computational processing, and are thus widely

used, for example, by insurance software. For the same reason, these data are also well-suited

for use in machine learning algorithms. A large focus of the present work is to understand

how to best harness these data and unlock any predictive insight they may contain.

For all the convenience and abundance of coded data, it is important to consider their

shortcomings. Coded data often give only a coarse approximation of reality, since they are

based on human-defined categories. For example, an eye operation can be a very complex

undertaking, with many potential pathways and outcomes. It is not a stretch to imagine

that two different eye operations, even under very similar circumstances and with identical

objectives, might differ substantially in efficacy and side-effects. However, a coding system

for medical procedures might record these two operations with the same code, ignoring a

wealth of nuance and detail.

5



www.manaraa.com

In addition to the coarsening nature of coded data, another potential source of error

resides in the coding process itself, which is performed by humans and is thus error-prone.

Coders are faced with the task of converting the activities and outcomes of a healthcare event

into a sequence of various types of codes. Each coder has her own level of competence and

set of habits, and these can affect the encoding process in potentially important ways, given

that coding systems often have thousands of possible codes and it is not always clear which

code is best. Another pitfall is the phenomenon of upcoding, in which coders are incentivized

to assign more – and more costly – codes, so as to drive up charges. This corrupts the data

and could lead one to think someone is more sick than he actually is.

We now look more closely at three important strains of coded data.

1.2.6 Diagnosis Codes. Diagnosis codes record the diagnoses that a doctor makes when

treating patients. For any given visit to the doctor, a patient may end up with multiple

diagnosis codes if the doctor determines there are multiple health issues at play. Often,

insurance records will indicate a primary diagnosis code and then possibly several secondary

diagnosis codes. The primary diagnosis code corresponds to the principal reason for the

doctor visit, and secondary codes record any other maladies that the doctor notes. For

example, a patient may see a doctor about back pain and receive a primary diagnosis code

indicating as much, but then may subsequently be diagnosed with high blood pressure.

The high blood pressure diagnosis code will be among the secondary codes. When using

diagnosis codes for disease prediction, it is therefore wise to utilize all available data, rather

than simply the primary diagnosis codes.

The most common flavor of diagnosis codes is the International Classification of Diseases

(ICD) [7]. This coding system has been around for decades. Up until recently, the 9th

version of ICD, or ICD-9, has been the standard in the US healthcare system. (Technically,

the system is known as ICD-9-CM, with “CM” indicating clinical modification, but for the

sake of brevity, we stick with ICD-9.)

ICD-9 consists of around 13,000 diagnosis codes. The majority of these codes are numer-

6



www.manaraa.com

ICD-9 Code Description

491.x Chronic bronchitis
491.0 Simple chronic bronchitis
491.20 Obstructive chronic bronchitis without exacerbation
491.22 Obstructive chronic bronchitis with acute bronchitis
492.x Emphysema
E8261 Pedal cycle accident injuring pedal cyclist
V10.x Personal history of malignant neoplasm

Table 1.1: Selection of ICD-9 diagnosis codes. The ‘x’ character indicates a wildcard that
may be replaced with additional digits. Note the hierarchical nature of the numerical codes.

ical strings of four or five digits, arranged in a semi-heirarchical manner. For these codes, the

first three digits determine a general diagnosis, and subsequent digits indicate more detailed

information. Two codes sharing the first three digits, thus, are closely related. Additionally,

the first three digits are arranged such that two codes whose first three digits are distinct

but numerically close are often related.

A smaller portion of the ICD-9 diagnosis codes are alpha-numeric strings, beginning

either with ‘E’ or ‘V’, and followed by numerical digits. The ‘E’-codes generally correspond

to injuries caused by external factors, such as automobile accidents or explosions. The

’V’-codes are a bit more eclectic, and allow for coding of factors that influence health but

aren’t related to the numerical codes or the ‘E’-codes. See Table 1.1 for a selection of ICD-9

diagnosis codes codes.

While ICD-9 diagnosis codes have long been the norm, there are updated versions in the

works. Recently, a new iteration of ICD has become the standard, namely ICD-10. The ICD-

10 diagnosis codes come to around 68,000 in number, thus allowing for very specific diagnoses.

The degree of specificity sometimes borders on the comical. Consider the following codes:

• W61.33XA: Pecked by chicken, initial encounter.

• V91.07XA: Burn due to water-skis on fire, initial encounter.

• Z63.1: Problems in relationship with in-laws.

7



www.manaraa.com

While there is sometimes a straightforward mapping from ICD-9 to ICD-10 codes, it is often

quite unclear how to switch between systems. ICD-11 is currently under development, with

a 2018 release scheduled. In this work, we operate exclusively in the ICD-9 system, since

our datasets predate the widespread adoption of the ICD-10 standard.

In some situations, it is desirable to have a smaller diagnosis code set. While truncation

to the first three digits of the ICD-9 diagnosis codes gives an immediate mapping to a smaller

set, there are also expert-derived groupings of ICD-9 codes that can be used for this purpose.

The Healthcare Cost and Utilization Project (HCUP), a collection of US healthcare data and

software tools sponsored by the Agency for Healthcare Research and Quality, provides just

such a partition. In particular, the HCUP Clinical Classifications Software (CCS) maps each

diagnosis code to exactly one of 283 groups [8]. Each group contains diagnosis codes that

fall into a clinically meaningful category. Examples of these categories include tuberculosis,

cancer of the stomach, and acute bronchitis.

1.2.7 Procedure Codes. Procedure codes indicate what medical procedures were per-

formed during a healthcare interaction. These codes can include surgical procedures, physical

therapy, diagnostic interventions, and other measures. While diagnosis codes generally record

what ails the patient, procedure codes capture what is done to remedy the ailments. In in-

surance records, procedure codes are often linked directly to diagnosis codes, thus providing

potentially useful context for the procedures.

There are various coding systems for medical procedures. The ICD-9 code set has a

section devoted to procedure codes, known as Volume 3. ICD-9 procedure codes are strings of

two to four numerical digits. As with the diagnosis codes, these procedure codes are organized

in a semi-hierarchical manner, with the first two digits specifying a class of procedures, and

subsequent digits giving further detail.

Another common coding system for medical procedures is the Healthcare Common Pro-

cedure Coding System, or HCPCS. This coding system is built on the Current Procedural

Terminology (CPT) coding system of the American Medical Association, but includes ad-

8



www.manaraa.com

ditional levels of codes to capture a wide variety of medical procedures. HCPCS codes are

generally alphanumeric strings of length five. Mapping between HCPCS and ICD-9 pro-

cedure codes can be a tricky task, as there does not exist a clear correspondence in many

cases.

1.2.8 Drug Codes. Prescription drugs are another important source of coded data.

When an individual goes to the pharmacy to fill a prescription, the transaction is recorded

by the insurance provider, and the purchased drug must be coded. There are a few options

for drug coding.

The most straightforward approach is to simply record the brand name of the drug.

However, this method lacks any way to link very similar drugs from different brands. A

remedy for this is given by the United States Adopted Name system, or USAN. USAN

assigns a unique name to pharmaceuticals in the United States, based on the chemical

contents of the drug. This removes the artificial distinction between differently-branded

ibuprofen, for example. Unlike ICD-9 codes, there is no hierarchical structure in USAN

names. Of course, these generic names must be constantly supplemented and updated by a

governing committee as new drugs enter the market. Another coding system for drugs is the

National Drug Code set, or NDC. Each NDC drug code has ten numeric digits organized into

three segments. These segments encode information on the drug distributor, drug product,

strength and form of dosage, and package size.

It is important to consider that coded drug data doesn’t indicate whether an individual

has actually taken the prescribed medication, only that a prescription was filled. If the

data indicate that an individual refills a prescription consistently at regular intervals, it is

reasonable to assume that he is, in fact, consuming the drugs. On the other hand, if the

data show an isolated drug code, it is hard to know if the prescription was only meant to be

filled once, of if the person simply failed to refill. Additionally, absence of coded drug data

doesn’t guarantee that no prescription was given. Given this uncertainty, using drug codes

for disease prediction and other analytics may require careful thought.

9



www.manaraa.com

1.3 Machine Learning in Healthcare

Machine learning is all about developing mathematical, computational, and statistical method-

ologies for finding patterns in and extracting insight from data. Data, in turn, are the con-

crete manifestations of structures and processes that shape the world. Machine learning

research aims to unlock technologies that can solve hitherto intractable problems and trans-

form human life in many different areas. Such has already been realized to spectacular effect

many times over.

Healthcare is rife with rich data and difficult problems; it is therefore fertile ground for

machine learning. Indeed, machine learning occupies an ever-growing role within healthcare.

The 2015 NIPS conference in Montreal, Canada featured a popular and bustling workshop

on machine learning in healthcare [9]. Intermountain Healthcare expanded its Population

Health division in 2015 by hiring data scientists with statistical and mathematical skills.

Computer science and healthcare journals alike are publishing papers on a range of machine

learning techniques applied to healthcare problems, from topic modeling [10] [11] [12] and

natural language processing [13], to Markov processes [14] and hidden Markov models [15]

[16], and so on [17].

The aim of machine learning research in healthcare is not, of course, to replace human

doctors or nurses, but rather to supplement and provide support where humans struggle.

By doing precisely what human can’t, namely processing huge amounts of data quickly,

machine learning methods can both improve the quality and consistency of care on a large

scale. Additionally, machine learning has promise in aiding more basic research in healthcare-

related fields, such as automated drug discovery, genomics, and computational biology.

Despite the optimism of the above paragraphs, the success of machine learning in health-

care is not inevitable. Researchers must be careful not to get caught up in the buzzwords and

hype, but stay grounded in the field, ask the right questions, and always critically examine

what they do. We examine two important issues to keep in mind when practicing machine

learning in healthcare.

10



www.manaraa.com

1.3.1 Interpretability. An important attribute of machine learning algorithms in the

context of healthcare is interpretability. Many techniques in machine learning, although

capable of accomplishing sophisticated tasks admirably, often operate as black boxes. They

take inputs and compute outputs, but the mechanisms of this computation can be difficult

to understand on anything beyond a technical level, and we don’t always gain any real

insight into the problem. With the stakes so high in healthcare, doctors and patients are

understandably uncomfortable with basing decisions on predictions produced by inscrutable

algorithms. Indeed, even if we are confident in the accuracy and robustness of a machine

learning algorithm, blind reliance on its output can lead to unintended and unfavorable

consequences. Furthermore, it can be difficult to debug and validate an algorithm based

purely on its output, without understanding its inner workings and comparing them to

proven methods.

So what constitutes an interpretable machine learning algorithm? It is difficult to pre-

cisely quantify the notion of interpretability. It certainly depends both on the algorithm at

hand and the particular problem we are trying to solve. Generally speaking, however, we say

that an algorithm or model is interpretable if there is a known way to draw conclusions from

the model about the underlying problem that are deemed useful by some qualified expert.

Example 1.1 (Interpretable Probabilistic Models). Probabilistic models are frequently in-

terpretable, since their parameters can usually be tied to useful probability statements about

the data. For example, logistic regression is a probabilistic classifier whose parameters in-

dicate how each element of the input vector marginally affects the odds of the output. We

will explore this topic further at a later point.

Example 1.2 (Proprietary Software). Healthcare systems encounter uninterpretable black-

box models when they license proprietary software that doesn’t expose its source code. Even

though the quality of a model can in some ways be assessed purely based on the accuracy

of its output, the healthcare system using the software will have to ultimately rely on the

word of the third party owner, and the chance of gaining useful insight is low.

11



www.manaraa.com

1.3.2 Datasets. At the heart of machine learning techniques is the use of observed data

to train a model. If the dataset used in the training process is flawed in some way, the result-

ing model will likely be just as flawed. A high quality training set is of utmost importance.

We list a few items of particular note when it comes to healthcare datasets.

• Imbalance. When a certain important property (as determined by the problem at

hand) is shared by only a very small proportion of the dataset, we say that the dataset

is imbalanced. Healthcare datasets dealing with, for example, rare diseases, are often

imbalanced. Many standard machine learning methods deteriorate when the data are

too imbalanced; they tend to ignore the important, yet rare, property. Fortunately,

there are often ways to work around these pitfalls (see, e.g., [18] [19]), but this is only

possible when the researcher is aware of the imbalance problem in the first place.

• Sample Size. Despite the enormity of recorded healthcare data, access issues or other

factors may require one to work with small datasets. In this case, one should take

care that the machine learning method used doesn’t overfit the data and pick up on

spurious patterns or features. The interpretation and generalization of models trained

on small amounts of data should be regarded with a healthy does of skepticism.

• Realism. In the typical machine learning scenario in healthcare, the researcher must

prepare a dataset for herself using data that were not collected with her particular

research objectives in mind. Although the original data reflect reality insofar as they

were accurately recorded in real-world healthcare systems, the machine learning re-

searcher should ensure that the data preprocessing steps don’t introduce unrealistic

artifacts or attributes into the dataset. Mistakes here include filling in missing values

incorrectly and attempting to boost the size of the dataset by admitting data that

don’t quite fit in the with the task.

• Generality. Healthcare datasets tend to consist of geographically coherent individuals.

Rural populations will likely differ in important ways from urban populations, and

12



www.manaraa.com

the health concerns of one city may well differ from those of another. It is therefore

important to consider just how general the dataset is, as that will bound the generality

of the machine learning model itself. In many cases, it is probably impossible to

have a single model that performs well on a variety of different datasets from different

areas. However, it is important to test the methodology for creating the model on

several different healthcare datasets, as this can suggest whether the machine learning

technique is widely useful.

Chapter 2. Classification

2.1 Introduction

The aim of classification is to assign labels to objects. More formally, assume there is a set

X of objects and a finite set Y of labels. The game is to find a function that maps from

X to Y . Binary classification is the simplest form of classification, where |Y| = 2. In this

situation, we conventionally set Y = {0, 1}. Binary classifiers are often the building blocks

for classification problems in which there are many possible labels.

Example 2.1 (Facial Recognition). A common – and often difficult – example of classifica-

tion is the task of recognizing the identity of individuals in digital images. In this case, the

set X consists of images, and Y is a set of names of people we wish to recognize. While it may

not be too difficult for humans to accomplish this task, it is not immediately obvious how

to computationally automate the process. Much research has gone into developing effective

image classification algorithms, and nowadays the state-of-the-art is quite effective indeed.

Example 2.2 (Author Identification). Identifying the authorship of text is another instance

of classification. It may be much more difficult and expensive for humans to accomplish this

task at large scale, but with a bit of clever text processing, algorithmic solutions are quite

13



www.manaraa.com

feasible. In this case, X is a set of texts (such as forum posts, audio speech transcriptions,

or letters), and Y is a set of potential authors.

Example 2.3 (Disease Prediction). Of great interest to healthcare providers, insurers, and

this thesis, is the task of predicting which individuals will contract a particular disease in

the future. An effective disease prediction algorithm can lead to early intervention and

preventive care, which tend to improve patient outcomes and lower medical costs. For this

binary classification task, X is a set of attributes of potentially at-risk individuals (such as

age, sex, and health history), and Y = {0, 1}, where 0 signifies no disease incidence, and 1

signifies disease.

It is useful to make a distinction between hard and soft classification.

Definition 2.4 (Hard and Soft Classification). Let X be a set and let Y = {0, 1}. A hard

classifier is a function from X to Y . A soft classifier is a function from X to R. (Generalizing

these concepts to non-binary classification is straightforward, but of limited interest to this

thesis.)

Whereas a hard classifier fully commits to a label, a soft classifier can indicate degree of

certainty. In particular, when a soft classifier takes values in the unit interval, we can often

interpret its output as the probability that the label is 1.

We can obtain a hard classifier from a soft classifier by a simple thresholding operation.

Let f : X → R be a soft classifier, and let τ ∈ R. We define the hard classifier fτ : X → Y
by the formula

fτ (x) =

⎧⎪⎪⎨
⎪⎪⎩
0 f(x) < τ

1 f(x) ≥ τ

Using a soft classifier and this thresholding technique, we can vary the level of certainty

required to label an object with 1. This type of flexibility is valuable when there are costs

associated with the different labels.

Example 2.5 (Disease Prediction). Suppose we have a soft classifier that takes values in the

unit interval. This classifier has been created to predict if someone is at risk of developing

14



www.manaraa.com

late stage CKD; the label 0 indicates no risk, and the label 1 indicates high risk. Should

an individual be flagged as high risk, the doctor may order potentially costly tests and

treatments. Thus, it is important to assign the label 1 only to those individuals who we are

fairly certain are high risk. In this case, we might set the threshold at 0.90 when assigning

hard labels.

In the sequel, we assume that X = R
m for some positive integer m.

2.2 Linear Classifiers

Linear classifiers are a widely used family of classifiers. They have the advantage of being

easy to use, interpretable, and fairly effective for many problems. Before we can define what

these are, we first need to understand the decision boundary of a classifier.

Definition 2.6 (Decision Boundary). Let f : X → Y be a classifier. The decision boundary

of f is the set ⋃
y∈Y

bd(f−1(y)).

We remark that in the case of binary classification, the decision boundary can simply be

expressed as

bd(f−1(1)).

The decision boundary gives us a way to understand how the classifier carves up the set

of objects X into classes. Depending on the classification problem at hand, we may require

very complex or very simple decision boundaries. Generally, different types of classification

algorithms will enable different kinds of decision boundaries. See Figure 2.1 for the level sets

and decision boundaries of two classifiers.

For some classifiers, distance from the decision boundary corresponds to the degree of

certainty of the classification. For example, given objects x(1), x(2) ∈ X , if x(1) is much closer

than x(2) to the decision boundary, then we might be more confident in the label assigned

to x(2) than in the label assigned to x(1).

15



www.manaraa.com

Figure 2.1: Decision boundaries and level sets for a classification problem with three labels.

We are now ready for the following definition.

Definition 2.7 (Linear Classifier). Let f : X → Y . We say that f is a linear classifier if

the decision boundary of f is an affine hyperplane of X .

A linear classifier is one of the simplest ways to classify objects. Essentially, it cuts X
into two half-spaces, and assigns one label to each half-space. Observe that any hyperplane

may be written as the level set of a linear function, i.e. has the form

{x ∈ X : 〈x, w〉 = b}

for some vector w ∈ X and scalar b ∈ R (here, 〈·, ·〉 denotes the Euclidean inner product).

We call this set the (w, b)-hyperplane.

If a linear classifier f has a decision boundary defined by the (w, b)-hyperplane, there is

still the question of which label to assign to which half-space. Without loss of generality, we

adopt the convention that f(x) = 1 if 〈x, w〉 ≥ b and f(x) = 0 otherwise. Thus, there is a

correspondence between linear classifiers and points of the form (w, b) ∈ X ×R. Indeed, it is

apparent that each linear classifier can be obtained by zero-thresholding an affine function

of the form

x �→ 〈x, w〉 − b.

In this way, we see that affine functions from X to R are just soft classifiers which yield

16



www.manaraa.com

(hard) linear classifiers under thresholding. We generalize this notion slightly in the following

definition.

Definition 2.8 (Soft Linear Classifier). Let f : X → R. We say that f is a soft linear

classifier if there exist w ∈ X , b ∈ R, and some strictly monotonic function σ : R → R such

that

f(x) = σ(〈x, w〉 − b).

We note that the level sets of a soft linear classifier are affine hyperplanes.

Example 2.9 (Logistic Regression). One of the workhorses of binary classification is logistic

regression. There are many different ways to motivate and formulate this particular classifier,

but it is perhaps most simply understood as a soft linear classifier of the form

x �→ σ(〈x, w〉 − b),

where σ : R → R is the logistic function defined by the formula

σ(z) =
1

1 + e−z
.

Logistic regression also gives a method for selecting the parameters w and b given a set of

labeled training data. More detail on this is given later.

2.3 Training

One of the central tenets of machine learning is to use data to make decisions. Concretely,

machine learning techniques construct models or functions using observed data. This process

is called training, and the dataset utilized is the training set. Training consists of selecting

a model or function that best “fits” the training set.

When it comes to classification, the training set is a collection of labeled examples. That

is, the training set is a subset of X × Y . This situation is known as supervised learning,

17



www.manaraa.com

since the training data act as an oracle and “supervise” the training process. To formalize

this, let F be a family of (possibly soft) classifiers, indexed by a parameter z that takes

values in a parameter set Z. For example, F may the the family of linear classifiers, and

z = (w, b) ∈ X × R. Let the training set be given by

D = {(x(i), y(i)) ∈ X × Y : 1 ≤ i ≤ n}

for some n ∈ N. Let fit : Z → R measure the fit to the data; that is, fit(z) gives the fit

between the training set D and the classifier defined by the parameter z. Then the training

task boils down to the optimization problem

optimize
z∈Z

fit(z).

Whether the optimization is maximization or minimization depends on the interpretation of

the fit function.

Coming up with a good measure of fit between a classifier and training set is of central

importance. Below we review two common approaches, namely likelihood maximization and

loss minimization.

2.3.1 Likelihood Maximization. Let f : X → [0, 1] be a soft classifier. We say that f

is a probabilistic classifier if there exists a X -valued random vector X, a Y-valued random

variable Y , and a conditional probability distribution p such that

f(x) = p(Y = 1 |X = x).

Notationally, we use a lowercase p to denote either a probability mass function or density

function, depending on whether the random variables in question are discrete or continuous.

Since X takes values in X = R
m, we sometimes write X = (X1, . . . , Xm).

Training a probabilistic classifier, then, amounts to choosing the conditional probability

18



www.manaraa.com

distribution p from some family indexed by a parameter z. We use the notation p(· ; z) to
denote dependence on this parameter. For a training set D, the fit function is the conditional

likelihood L : Z → [0, 1], given by

L(z) =
n∏

i=1

p(Y = y(i) |X = x(i) ; z).

It is often convenient, both mathematically and numerically, to instead use the log conditional

likelihood

l(z) = log(L(z)) =
n∑

i=1

log p(Y = y(i) |X = x(i) ; z).

Probabilistic classifiers that are trained using the conditional (log) likelihood are sometimes

called discriminative models.

Some probabilistic classifiers come with additional structure, namely a joint distribution

for (Y,X). This is sometimes called a generative model. Since Y is binary, it is easy to

obtain the marginal distribution of X, namely

p(X = x) = p(Y = 0, X = x) + p(Y = 1, X = x).

In this case, our classifier function can be computed as

f(x) =
p(Y = 1, X = x)

p(X = x)
,

and we use the joint likelihood

L(z) =
n∏

i=1

p(Y = y(i), X = x(i) ; z).

Again, it is often more convenient to use the log likelihood.

Regardless of whether the joint or conditional likelihood is used, training involves maxi-

mizing the (log) likelihood function.

19



www.manaraa.com

Example 2.10 (Naive Bayes Classifier). The naive Bayes classifier is a generative model

that defines a marginal distribution for Y and a conditional distribution for X given Y . The

joint distribution is then recovered via the formula

p(Y,X) = p(Y )p(X |Y ).

The “naive” part of this model comes from the assumption that the components of X are

independent of each other when conditioned on Y , i.e.

p(X |Y ) =
m∏
i=1

p(Xi |Y ).

The “Bayes” part of the model comes from the use of Bayes theorem when computing the

soft classifier function f :

f(x) = p(Y = 1 |X = x) =
p(Y = 1)p(X = x |Y = 1)

p(X = x)
.

The naive Bayes classifier is regarded as a very simple, yet often fairly effective solution to

classification problems. However, it falls short on more difficult tasks.

Example 2.11 (Logistic Regression). We return to the linear classifier known as logistic

regression, and show how it can be viewed as a discriminative model. Define a conditional

probability distribution with parameters z = (w, b) ∈ X × R by

p(Y = 1 |X = x ; w, b) =
1

1 + e−〈x,w〉+b
.

Then the logistic regression classifier with parameters (w, b) is precisely

f(x ; w, b) = p(Y = 1 |X = x ; w, b).

20



www.manaraa.com

Given a training set D, we train logistic regression by maximizing the conditional log

likelihood,

l(w, b) =
n∑

i=1

log p(Y = y(i) |X = x(i) ; w, b).

2.3.2 Loss Minimization. Loss minimization is another prominent paradigm for train-

ing classifiers. In this approach, we define a loss function (sometimes called cost function)

C : Y ×R → R. Given a true label y ∈ Y and a predicted label y′ ∈ R, the quantity C(y, y′)

measures the loss (or cost) incurred by the predicted y′ in light of the true label y. Let

f(· ; z) be a hard or soft classifier with parameter z. The fit function for training is just the

average loss over the training set D, i.e.

fit(z) =
1

n

n∑
i=1

C(y(i), f(x(i) ; z)),

and we seek to minimize this quantity. A more thorough discussion of loss minimization,

grounded in statistical learning theory, is given in [20].

There are several common loss functions. We review some of them in the following set

of examples. For notational convenience, we set Y = {±1} for these examples.

Example 2.12 (0-1 Loss). The 0-1 loss function is the most obvious choice for hard classi-

fiers. It is simply defined by

C(y, y′) =

⎧⎪⎪⎨
⎪⎪⎩
0 y = y′

1 y 
= y′
.

Observe that under this loss function, the average loss over the training set is just the

proportion of the training set that the classifier incorrectly labels. Hence, by minimizing the

average loss, we are simply maximizing the accuracy of the classifier on the training set.

Example 2.13 (Squared Loss). Squared loss is appropriate for soft classifiers. It is defined

by

C(y, y′) = (y − y′)2.

21



www.manaraa.com

Observe that this function coincides with 0-1 loss in the case of hard classifiers. Using a

little algebra and the fact that if y ∈ Y , then y2 = 1, we have

C(y, y′) = (y − y′)2

= y2(1− yy′)2

= (1− yy′)2

= φs(yy
′),

where φs : R → R is given by

φs(t) = (1− t)2.

Example 2.14 (Hinge Loss). Let φh : R → R be given by

φh(t) = max(0, 1− t).

Then hinge loss is defined as

C(y, y′) = φh(yy
′).

The name of this loss function comes from the shape of the graph of φh. Training a linear

classifier using hinge loss is known as the linear support vector machine. Concretely, given

the family of soft linear classifiers with parameters (w, b) defined by

f(x ; w, b) = 〈x, w〉 − b,

the linear support vector machine chooses the particular parameters (w∗, b∗) that minimize

average hinge loss over the training set.

Example 2.15 (Logistic Loss). Let φl : R → R be given by

φl(t) =
1

log 2
log(1 + e−t).

22



www.manaraa.com

Figure 2.2: Plots of φs, φh, and φl as defined by squared, hinge, and logistic loss, respectively.

Then logistic loss is defined as

C(y, y′) = φl(yy
′).

Inspecting the graphs of φl and φh, we observe that φl is a smooth approximation of the

piecewise-linear φh. See Figure 2.2 for a comparison of φs, φh, and φl. Training a linear

classifier using logistic loss is known as logistic regression. Concretely, given the family of

soft linear classifiers with parameters (w, b) defined by

f(x ; w, b) = 〈x, w〉 − b,

logistic regression chooses the particular parameters (w∗, b∗) that minimize average logistic

loss over the training set. We will show later how this formulation is equivalent to our

previous probabilistic formulation.

Example 2.16 (Cross Entropy). For this example, we revert back to the convention that

Y = {0, 1}. Cross entropy is appropriate for probabilistic classifiers, i.e. classifiers that

23



www.manaraa.com

output values in the unit interval and are interpreted as giving the probability of the label

1. The loss function corresponding to cross entropy is

C(y, y′) = −y log y′ − (1− y) log(1− y′).

This loss function is commonly used when training neural networks.

2.3.3 Solving the Optimization Problem. We have discussed how to formulate the

training task as an optimization problem, but that is just the first step. Actually solving the

optimization problem may range from very straightforward to wildly intractable, depending

on the loss function or likelihood we choose. Finding better and faster ways of solving

(or approximately solving) these optimization problems is an active area of research. In

this work, we largely take it for granted that we can numerically perform the required

optimization, but the reader should not infer that this is a solved problem in all cases.

2.4 Testing

In training, we do our best to construct a classifier that fits a training set of labeled data

as well as possible. However, our ultimate goal is to have a classifier that performs well

on all appropriate data, not just the particular examples in the training set. We use the

term generalization to denote the performance of a classifier on new, unseen data. Since the

effectiveness of a classifier resides in its ability to make useful predictions even on unseen

examples, it is important to investigate its generalization.

We measure the generalization by gathering a new collection of labeled data, which we

call the test set, and reporting possibly multiple numerical quantities that evaluate how well

the classifier was able to predict the labels in the test set. What are effective performance

metrics? There are numerous possibilities (see, for example, [21]). We touch on a couple

examples below. Throughout these examples, we assume a test set {(x(i), y(i) ∈ X ×Y : 1 ≤
i ≤ k}.

24



www.manaraa.com

2.4.1 Accuracy. For a hard classifier f , the most obvious measure of performance is

accuracy, which is given by the expression

ACC =
#{i : f(x(i)) = y(i)}

k
.

Accuracy, of course, is just the percentage of correct predictions in the test set. It can range

in value from zero to one, and higher values indicate better performance.

While easily understood, this measure suffers from a couple of drawbacks. First, it treats

the two labels symmetrically, when in real life, predicting one class correctly (or avoiding false

predictions of that class) may be much more important than with the other class. Accuracy

also comes up short when dealing with imbalanced data, in which one class is much more

prevalent than the other. When data are highly imbalanced, a “dumb” classifier that just

labels everything with the most prevalent label will have high accuracy, but nevertheless will

fail completely in classifying the rare class.

2.4.2 ROC and AUC. For soft classifiers, a popular performance metric is given by

the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The

ROC curve gives a visual depiction of performance, while the AUC gives a succinct numerical

measure.

Before getting into these, we first need to define the true positive rate (TPR) of a hard

classifier f as

TPR =
#{i : f(x(i)) = 1 = y(i)}

#{i : y(i) = 1}

and the false positive rate (FPR) as

FPR =
#{i : f(x(i)) = 1 
= y(i)}

#{i : y(i) 
= 1} .

Now let f be a soft classifier, and let τ be a threshold value. For each τ ∈ R, the

thresholded hard classifier fτ has true positive rate TPR(τ) and false positive rate FPR(τ).

25



www.manaraa.com

Figure 2.3: ROC curves and AUC scores for a good classifier (blue) and a poor classifier
(red).

The ROC curve is the parameterized curve

τ �→ (FPR(τ), TPR(τ)).

Of course, since the test set is finite, the image of the ROC curve consists of finitely many

points. When plotting the ROC curve, it is conventional to linearly interpolate between

neighboring points under the dictionary ordering.

Note that ROC curves are contained in the unit square [0, 1]× [0, 1]. Generally speaking,

the ROC curve of a good classifier will have a steep positive slope near the origin and will

approach the ceiling of the unit square quickly. The ROC curve of a poor classifier will have

a gentler slope and lie closer to the line y = x. See Figure 2.3 for a depiction of these cases.

The AUC is area bounded by the bottom of the unit square and the ROC curve. An

AUC score closer to one indicates good performance, while an AUC closer to 0.50 indicates

poor performance. The AUC can be interpreted as (an estimate of) the probability that

26



www.manaraa.com

f(x) > f(x′), where x ∈ X is a randomly chosen example with label 1 and x′ ∈ X is a

randomly chosen example with label 0.

2.5 Regularization

A common problem in machine learning generally, and in classifier training in particular, is

that of overfitting. We say that a classifier is overfit to the training data if it fits the training

set well but has poor generalization. Ideally, the training dataset is sufficiently large and

representative so as to ensure that any classifier trained on it will generalize well. These

conditions are frequently not met, however, and even in the best of times, overfitting can be

a real problem.

One major cause of overfitting is a training set that is too small or noisy. In this situation,

random noise that might otherwise cancel out in larger datasets is at greater threat to

influence the likelihood or cost function in training. When this happens, the trained classifier

will be biased by the chance noise in the training set and may generalize poorly. Because of

this issue, it is vital to obtain training data that is both plentiful and as representative as

possible.

Another root of overfitting is when the complexity of the indexed family of classifiers

used in training exceeds the data complexity of the training set. A classic example, albeit

not related to classification, is the problem of fitting a curve to a set of points. Suppose

the training set consists of several points that nearly lie on a line. If the person trying to

fit a curve is unaware that the training set has low data complexity, and fits a high-degree

polynomial to the points, she will have a curve that fits the training data perfectly, but

generalizes horribly, since it differs vastly from the line on which the points nearly lie.

Regularization refers to any attempt to curb overfitting by altering the training process.

One common form of regularization is to introduce some kind of penalty term into the

training objective function which discourages the parameters from growing too much. More

specifically, let z be the parameter vector, and assume without loss of generality that the

27



www.manaraa.com

training problem is given by

min
z∈Z

fit(z).

It is often customary to include either a weighted L2 penalty

min
z∈Z

fit(z) + C‖z‖22

or a weighted L1 penalty

min
z∈Z

fit(z) + C‖z‖1.

The weight C determines how strong the regularization. The L2 penalty generally prevents

any entries of z from growing too large, while the L1 penalty has the effect of encouraging

sparsity, i.e. favoring parameter vectors that have many entries equal to zero.

Another regularization strategy is to prematurely terminate the training procedure. This

can be done, for example, by halting the optimization before it converges, or by shrinking

the set of allowable parameters over which to optimize. The motivation for this technique

is the notion that the longer a classifier is trained, the more complex it becomes. Thus,

early stopping can prevent excessive complexity. A separate set of labeled data called a

validation set can be handy when deciding when to halt training. The idea is to evaluate

the partially-trained classifier on the validation set every so often, and terminate training

once the performance on the validation set ceases to improve.

Regularization is often more of an art than a science. Choosing which type of regular-

ization, what weight value, and so forth, is frequently informed more by empirical observa-

tion than theory. Nonetheless, there is interesting and sometimes enlightening theoretical

grounding for the concepts of overfitting, model and data complexity, and the regularization

techniques [22] [23].

28



www.manaraa.com

2.6 Logistic Regression

We have encountered logistic regression (LR) several times already, both in the context of

likelihood maximization and loss minimization. In this section, we tie together the previous

material and expand the discussion.

Recall that logistic regression is a soft linear classifier with parameters (w, b) ∈ X × R.

Its usual formulation is as a discriminative model, with its classification function given by

f(x) = p(Y = 1 |X = x ; w, b) = σ(〈x, w〉 − b),

where σ is the logistic function as defined previously. Training is done by maximizing the

conditional log likelihood of the training set D = {(x(i), y(i)) ∈ X × Y : 1 ≤ i ≤ n}. That

is, in training we solve the problem

max
(w,b)∈X×R

n∑
i=1

log p(Y = y(i) |X = x(i) ; w, b),

with the possible addition of a regularization term to the objective function. See Figure 2.4

for a visual example.

How does this relate to the loss minimization formulation? If we adopt the notation

Y = {±1}, we observe that for any x ∈ X ,

p(Y = 1 |X = x ; w, b) =
1

1 + e−(〈x,w〉−b)

29



www.manaraa.com

Figure 2.4: A logistic regression classifier together with the data on which it was trained.

and

p(Y = −1 |X = x ; w, b) = 1− p(Y = 1 |X = x ; w, b)

= 1− 1

1 + e−(〈x,w〉−b)

=
1 + e−(〈x,w〉−b) − 1

1 + e−(〈x,w〉−b)

=
1

1 + e〈x,w〉−b
.

Hence, for any (y, x) ∈ Y × X , we in fact have

p(Y = y |X = x ; w, b) =
1

1 + e−y(〈x,w〉−b)
.

30



www.manaraa.com

With this in mind, we see that we can rewrite our conditional log likelihood as follows:

n∑
i=1

log p(Y = y(i) |X = x(i) ; w, b) =
n∑

i=1

log
1

1 + e−y(i)(〈x(i),w〉−b)

= −
n∑

i=1

log(1 + e−y(i)(〈x(i),w〉−b))

= − log 2
n∑

i=1

φl(y
(i)(〈x(i), w〉 − b)),

where φl is as defined previously. Since the loss minimization problem

min
(w,b)∈X×R

1

n

n∑
i=1

φl(y
(i)(〈x(i), w〉 − b))

is equivalent to the likelihood maximization problem

max
(w,b)∈X×R

− log 2
n∑

i=1

φl(y
(i)(〈x(i), w〉 − b)),

we conclude that the two formulations of logistic regression are likewise equivalent.

The probabilistic formulation of logistic regression affords a nice interpretation of the

parameters w and b. To get at this interpretation, first consider the odds of an object x ∈ X
having the label 1:

Odds(Y = 1 |X = x) =
p(Y = 1 |X = x ; w, b)

p(Y = −1 |X = x ; w, b)

=
1 + e〈x,w〉−b

1 + e−(〈x,w〉−b)

= e〈x,w〉−b1 + e−(〈x,w〉−b)

1 + e−(〈x,w〉−b)

= e〈x,w〉−b.

Note that no matter the value of x, the odds of the label 1 always has the multiplicative

factor e−b. Because of this, we call b the bias. A large positive bias decreases the odds of the

label 1, and a large negative bias increases the odds of the same. Each entry of the parameter

31



www.manaraa.com

Input

0
male?

0

retired?

1

work
ing?

older than 60?

1

60 or y
oung

er?

female?

Figure 2.5: A simple decision tree.

vector w = (w1, . . . , wm) also influences the odds of the label 1. Specifically, the quantity ewi

gives the multiplicative change in the odds given a marginal unit increase in the i-coordinate

of x. To see why, let x = (x1, . . . , xi, . . . , xn) and let x′ = (x1, . . . , xi + 1, . . . , xn). Observe

that

Odds(Y = 1 |X = x′) = e〈x
′,w〉−b

= ewi+〈x,w〉−b

= ewiOdds(Y = 1 |X = x).

If wi is large in absolute value, this indicates that the feature xi has a strong influence on

the label. The sign of wi determines whether this influence is toward the positive or negative

label.

2.7 Decision Trees and Random Forests

A decision tree classifier computes its output using a tree structure in which each branch

point is associated with a binary condition on the input data, and each leaf is associated

with a classification output. An input datapoint starts at the root of the tree, and traverses

the tree according to the binary conditions until it reaches a leaf, at which point it outputs

the specified label (or soft prediction). See Figure 2.5 for a toy example.

Decision trees are generally trained in a loss-minimization setting with a greedy algorithm

32



www.manaraa.com

that constructs each binary condition in an iterative manner. Because of the transparent way

in which a decision tree computes its output, decision tree classifiers are readily interpretable.

They are also computationally cheap to use at test time. Unfortunately, they are known to

be susceptible to overfitting, and can struggle on difficult classification tasks. This can be

partially offset by pruning the tree after training, or by early stopping. The conditional

inference tree was developed to address these issues [24].

A random forest, or RF, is a soft classifier that is built out of several individual decision

tree classifiers. This approach is based on the idea of boosting, or combining the efforts of

an ensemble of potentially weak classifiers to produce a single, stronger classifier. The RF

accomplishes this by training a specified number of decision tree classifiers using two crucial

randomizing operations:

• each tree is trained on a random bootstrap sample of the available training data, and

• each tree only uses a randomly selected subset of the features of the data.

The trained decision trees then produce a single prediction by averaging the individual votes.

RF classifiers have better performance than individual decision trees, can be trained

quickly using parallel computing, and have proven to be a strong baseline model for many

classification tasks. However, the simple interpretability of decision trees does not carry over

to random forests. Instead, there is a measure of variable importance that indicates roughly

which features of the input data have the largest influence on predictive performance of the

classifier. Further details are provided in [25].

Various extensions and variations on the idea of boosting decision tree classifiers have

been proposed, such as extremely randomized trees [26] and gradient boosting [27]. These

provide additional options for strong baseline models.

33



www.manaraa.com

Chapter 3. Sequence Data

3.1 Introduction

Sequence data are defined by two characteristics:

• they are represented as sequences of elements, and

• the order of these elements is critical.

Symbolic sequence data are sequence data in which the elements of each sequence come from

a discrete set of symbols (such as letters or integers). Temporal sequence data are sequence

data in which the elements of each sequence are paired with time stamps, and the ordering

is determined by time. Time series are temporal sequence data in which the time stamps

occur at regular intervals over a period of time.

Sequence data are pervasive. We review a few examples below.

Example 3.1 (Natural Language). Language is probably the most important way that we

store and transmit information, whether through speech or writing. With the ubiquity of

electronic word processing and the digitization of historical documents, natural language

data are computer-accessible as never before, and hence ripe for machine learning. Natural

language can be regarded as symbolic sequence data, but is usually not temporal. The

symbol set consists of words, and the ordering is crucial.

Example 3.2 (Computational Genomics). As biotechnologies have enabled us to sequence

DNA, computational and algorithmic approaches to understanding genetics have become

increasingly important. The field of computational genomics is based on analyzing DNA

and RNA data, which are symbolic sequence data consisting of sequences of nucleic acids

(often encoded as letters: A,T,C,G,U). As with natural language, there is generally no

temporal aspect to this kind of data.

34



www.manaraa.com

Example 3.3 (Diagnosis Codes). Medical diagnosis codes provide a glimpse into an indi-

vidual’s health history. A dataset formed by collecting the diagnosis codes given to each

person in a population over a period of time is an example of temporal symbolic sequence

data. The symbol set is the set of codes (such as the ICD-9 diagnosis codes), and the time

stamps are the date and time at which the codes were given. Since people visit the doctor

irregularly, diagnosis code sequence data are not time series data.

Example 3.4 (Stock Market). Stock market data consist of daily prices for a given stock

or collection of stocks. Such data play a central role, of course, in financial mathematics

and on Wall Street. Since stock prices are measured each day, these data can be regarded

as time series data.

Unexample 3.5 (Demographic Data). Suppose we have a dataset consisting of the age,

sex, ethnicity, and yearly income for a population of adults. While each point in this dataset

could be regarded as a sequence of elements, namely the four attributes given above, there

is no important notion of ordering to these elements. This type of data, therefore, can’t be

regarded as sequence data.

In the sequel, we focus primarily on symbolic sequence data.

3.2 Data Representation

In order to use sequence data for machine learning tasks like classification, we need to find

a suitable way to represent it. While some models and algorithms are purpose-built to

handle sequence data, others only take fixed-length numerical vector input. In this section

we present a few different possibilities for symbolic sequence data representation.

For notational convenience, we assume that the elements of the sequence data are taken

from a symbol set that we enumerate as S = {s1, s2, . . . , sp}.

3.2.1 One-hot Encoding. It is often necessary to convert symbolic data to numeric

data. The most immediately obvious approach to this might be to simply use the enumer-

35



www.manaraa.com

ation of the symbols, i.e. map si to i for 1 ≤ i ≤ p. However, this imposes an arbitrary

numerical ordering of the symbols, which might lead to artificially regarding certain symbols

as more important than others (for example, sp might be weighted more that s1 due simply

to the fact that p > 1).

One-hot encoding offers an alternative approach that avoids such artificial distinctions.

In particular, one-hot encoding is a map e : S → R
p defined by

e(si) = ei,

where ei is the i-th standard basis vector of Rp, the vector of all zeros except for the i-

coordinate, which is 1. One-hot encoding thus gives a sparse – and, if the symbol set is

large, a high-dimensional – numerical encoding of the symbols.

Example 3.6 (DNA Sequences). DNA can be modeled as a sequence of four possible nu-

cleotides, often encoded with the letters A,T,C, and G. We can enumerate our symbol set

as S = {s1 = A, s2 = T, s3 = C, s4 = G}. The one-hot encoding of the sequence AATCTG,

then, is ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

3.2.2 Bag-of-words. The bag-of-words (BOW) representation of symbolic sequence data

maps each sequence (which can be of arbitrary finite length) to a fixed-length numeric vector.

This is advantageous, since these fixed-length vector representations can then be input into

many conventional models like logistic regression or random forest.

The BOW encoding of a sequence w is the vector whose i-th coordinate gives the number

of times that symbol si occurs in w. This can be realized as the sum of the one-hot encodings

of the elements of w.

36



www.manaraa.com

Example 3.7 (DNA Sequences). Continuing the previous example, the BOW representation

of the sequence AATCTG is just ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2

2

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that the sequential ordering is completely lost. Thus, the BOW representation pre-

cludes the possibility of gleaning any predictive insight or patterns present in the sequential

structure of the data.

3.2.3 Dimensionality Reduction. When the symbol set is large, i.e. when p is a large

integer, both the BOW representation and one-hot encoding are high-dimensional. When

any individual sequence only contains a relatively small number of the possible symbols, these

representations are also sparse. Sparse, high-dimensional data are often very compressible,

i.e. it is often possible to find a map from R
p to R

q, with q � p, that preserves the

structure of the data in some appropriate sense. The process of finding such a map is called

dimensionality reduction. While a large field in its own right, here we explore just a couple

of possibilities for dimensionality reduction.

One possibility is to map the symbol set S directly to a smaller symbol set. This is

feasible when there is a natural partition of S into groups of related symbols. For example,

if S is the set of ICD-9 diagnosis codes, we could truncate each code to its first three digits,

or apply the CCS grouping.

Another option is to use the popular topic model latent Dirichlet allocation (LDA). This

model was originally developed and is most commonly used for understanding the structure

of natural language text by discovering a set of topics prevalent in a collection of documents,

and inferring the prominence of each topic in a given document [28]. Despite its associations

with natural language processing, LDA can be used on any type of symbolic sequence data

and relies on the BOW representation.

37



www.manaraa.com

In LDA, a topic is a discrete distribution on the set of symbols S, and a topic distribution

is a discrete distribution on the set of topics. When the set of topics is enumerated, each

topic distribution can be realized in the obvious way as a stochastic vector in R
q, where q is

the number of topics. LDA uses a training set of symbolic sequences to construct a specified

number of topics. Once trained, LDA can determine the topic distribution of any symbolic

sequence. Thus, given a trained LDA model with q enumerated topics, we have a map from

R
p to R

q that sends a BOW sequence representation to its topic distribution.

Example 3.8 (Diagnosis Codes). The collection of diagnosis codes given to an individual

over a period of time can be viewed as a sort of document describing the health state during

that time. By training LDA on the diagnosis code sequences for an entire population, we

obtain not only a dimensionality-reduction map, but also a set of topics that are often

clinically coherent. These topics provide an interpretation for the lower-dimensional topic

distribution vectors. See Table 3.1.

3.3 Sequence Learning

Machine learning techniques for dealing with sequence data have enjoyed active attention

from researchers for several decades. For a taste of some of this research, see for example [29]

and [30]. Sequence data may be used in conventional tasks such as classification or clustering,

but there are also learning tasks that are specific to sequence data, such as sequence labeling

or segmentation.

Sequence data are often challenging to fully exploit in the machine learning setting. Rea-

sons for this include variability in sequence length, irregular sampling frequency in temporal

sequence data, sparsely occuring symbols, and potentially subtle yet critical longe-range

dependencies between elements in the sequences. In this section, we review two machine

learning models for sequence data that have overcome these challenges on various tasks.

38



www.manaraa.com

Topic 1 Topic 16
ULCER OF OTHER PART FOOT ASTHMA UNSPECIFIED
NEUROPATHY IN DIABETES ACUTE SINUSITIS NOS
DM NEURO TYPE II CNTRL COUGH
FIT/ADJ VASCULAR CATH ACUTE URI NOS
LONG TERM USE ANTIBIOTIC ACUTE BRONCHITIS
DM W/MANIF TYP II CNTRL ACUTE PHARYNGITIS
HYPERTENSION NOS CHRONIC SINUSITIS NOS
EDEMA HEADACHE
PAIN IN LIMB AC MAXILLARY SINUSITIS
CELLULITIS OF LEG ESOPHAGEAL REFLUX

Topic 19 Topic 30
ANXIETY STATE NOS LUMBAGO
DEPRESSIVE DISORDER NEC LUMBOSACRAL NEURITIS NOS
GENERALIZED ANXIETY DIS LUMB/LUMBOSAC DISC DEGEN
LONGTERM USE OTH MED LUMBOSACRAL SPONDYLOSIS
RHEUMATOID ARTHRITIS LUMBAR DISC DISPLACEMENT
ATTN DEFICIT W HYPERACT BACKACHE NOS
RECURR DEPR PSYCHOS-MOD STENOS LUMB W/O NEU CLAU
INSOMNIA, UNSP PHYSICAL THERAPY NEC
ATTN DEFIC NONHYPERACT JOINT PAIN-PELVIS
ALCOHOL ABUSE-UNSPEC POSTLAMINECT SYND-LUMBAR

Table 3.1: ICD-9 code descriptions associated with a selection of topics recovered by a LDA
topic model.

3.3.1 Conditional Random Fields. A conditional random field (CRF) is a probabilis-

tic model that defines a conditional probability model via a graph formalism. In particular,

given random vectors X and Y , along with an undirected graph G whose vertices are in one-

to-one correspondence with the elements of Y , a conditional random field is a distribution of

Y |X that factorizes according to the graph G in the sense of undirected graphical models

(also known as Markov random fields). The vector X is understood to be observed input

data, and Y the set of variables to be predicted. Additional detail about undirected graph-

ical models can be found in [31]. CRFs have been successfully applied to problems in text

and image processing and bioinformatics, among other fields. See [32] for an introduction to

CRFs and a review of their applications.

Where sequential data are concerned, the most used CRF structure is the linear-chain

CRF. In a linear-chain CRF, the graph G is a linear chain, i.e. a connected tree where each

39



www.manaraa.com

Y1 Y2 Y3 · · · YT

X

X = (X1, X2, X3, . . . , XT )

1
Figure 3.1: Graphical representation of a linear-chain CRF.

node has degree at most 2. The input variable X is generally taken to be a sequence, while

the target variable Y shares the linear chain structure of G, and usually aligns with the

sequence X. The graphical representation of such a model is given in Figure 3.1. When this

is the case, we can write X = (X1, X2, . . . , XT ), Y = (Y1, Y2, . . . , YT ), and

p(Y |X) =
1

Z

T∏
i=1

exp

(
K∑
j=1

wjfj(Yi, Yi−1, X, i)

)
.

Here, wj ∈ R, fj is a positive real-valued function for 1 ≤ j ≤ K, and Z is a the normalization

constant (which depends on X) that ensures the above expression is truly a probability

distribution. The modeler must define the functions fj, otherwise called the feature functions,

and the model itself learns the parameters wj during the training process. We observe that

T , the length of the sequence, can change to conform to the length of any input sequence,

as the number of parameters is constant with respect to T .

The most crucial part of using a linear-chain CRF for sequence learning is constructing

effective feature functions. This can be quite difficult for the unexperienced, since from the

model definition it is not immediately clear how the feature functions even influence the

probability distribution. One common approach to defining feature functions is known as

windowing, which we describe in the case that X and Y are symbolic sequences with symbol

40



www.manaraa.com

sets S1 and S2, respectively. First, specify a nonnegative integer ω, the window size. For

each 1 ≤ i ≤ T , define the window of size ω centered at i to be the subsequence

Xi−ω : i+ω = (Xi−ω, Xi−ω+1, . . . , Xi+ω).

Next, enumerate each element in the product set S2
2 × S1+2ω

1 , and notate this enumeration

with C = {c1, c2, . . . , cK}, which we call the set of window configurations. Finally, define the

feature function fj for 1 ≤ j ≤ K by the formula

fj(Yi, Yi−1, X, i) =

⎧⎪⎪⎨
⎪⎪⎩
1 (Yi, Yi−1, Xi−ω : i+ω) = cj

0 otherwise

.

Essentially, the feature function fj acts as a detector for configuration cj, returning 1 if

that configuration is present at a given point in the sequence data, and 0 otherwise. The

associated weight wj, which is learned by the model during training, indicates the extent

to which this configuration accounts for the structure of the data in the training set. With

a bit of care, these learned weights can afford an interpretation of the model. Other types

of feature functions can, of course, be added in, including features that detect long-range

configurations rather than just the local window configurations. The flexibility of these

feature functions account for the linear-chain CRF outperforming the more conventional

hidden Markov model (HMM) in several sequence learning tasks.

We can use a linear-chain CRF for sequence classification in the following manner. For

each labeled sequence pair (X = (x1, x2, . . . , xT ), y) in the training set, build a corresponding

target sequence Y = (y1, y2, . . . , yT ) with yi = y for 1 ≤ i ≤ T (so Y is a sequence of all

ones or all zeros, for example). Construct appropriate feature functions (such as window

features described above). Train the linear-chain CRF on the input-target sequence pairs

in the training set. For any new input sequence X = (x1, x2, . . . , xT ), the resulting soft

41



www.manaraa.com

classifier is just the map

X �→ p(yT = 1 |X).

(This marginal probability can be computed from the trained CRF model using a message-

passing algorithm.)

Another variant of the CRF, called the hidden conditional random field, or HCRF, ex-

pands and improves on this approach to sequence classification much in the same way that

the HMM expands on the vanilla Markov model. See [33] for additional details.

3.3.2 Recurrent Neural Networks. Neural networks have become very popular in

machine learning research of late, due largely to their often superior performance compared

to other algorithms in various data competitions and in the literature. The neural network

paradigm allows researchers to build flexible and complex models, often without needing to

go through the hard work of defining domain-specific features (as is necessary, for example,

with CRFs). Recent advances in neural network specific optimization techniques as well as

software and hardware support have allowed non-experts to build and train models with

relative ease and speed. On the flip side, neural network models often amount to black

box techniques, failing to yield insight into the problem at hand. Interpretability is not a

strength of neural networks.

Recurrent neural networks (RNNs) are neural network architectures that have a recurrent

structure which allows for processing of arbitrary sequence input. The recurrent structure

is basically a feedback loop: the internal state and output of a recurrent layer at position

i in the input sequence X is a function of the current input Xi and the internal state of

the recurrent layer at position i− 1. Of course, one can stack multiple recurrent layers and

combine these with other types of neural network layers to build deep and complex models.

See Figure 3.2 for a graphical representation.

The internal state of a recurrent layer includes any internal variables that are not passed

to subsequent layers in the network. State variables can be thought of as memory cells:

42



www.manaraa.com

Output Layer oi−1 oi oi+1

ri−1 ri ri+1Recurrent Layer

xi−1 xi xi+1Input Layer

1

Figure 3.2: A graphical depiction of a recurrent layer.

they allow the network to model long-range dependencies in the sequences, or “remember”

what came before. The exact nature of the internal state and the update equations for

the recurrent layer depend on which flavor of RNN is in question. In the vanilla RNN,

each neuron in the recurrent layer has a standard activation function such as the logistic

sigmoid, and the internal state variable is updated through this activation. In response to

shortcomings of the vanilla RNN, a more sophisticated recurrent layer was developed nearly

two decades ago called long short-term memory, or LSTM [34]. More recently, another type

of recurrent layer has been introduced, known as the gated recurrent unit, or GRU [35]. Both

of these recurrent structures aim to be able to capture and model long-range dependencies

in the sequence data. The authors in [36] conclude that the performance of LSTM and of

GRU layers are comparable on a number of sequence learning tasks. Additional technical

details and general information about RNNs and their successes can be found at [37].

We now describe a simple RNN architecture for symbolic sequence classification. The

first input layer just takes the input sequence data in the one-hot representation. The next

layer is a recurrent layer, either LSTM or GRU. The third layer is a conventional feedforward

layer. The final output layer is a two-dimensional softmax layer, which means it outputs a

stochastic vector of length 2. We interpret this output vector as giving the probability of

each label. This simple model is fully specified once the number of neurons in each layer is

43



www.manaraa.com

set and the settings for the recurrent layer are given. The model is trained by minimizing

cross entropy loss.

Chapter 4. Experiments

4.1 Introduction

In this chapter, we put several machine learning approaches described in previous chapters

to the test. We are primarily interested in finding successful techniques for utilizing medical

code sequence data in disease prediction and survival analysis tasks. To this end, we focus

exclusively on using code data rather than the full complement of healthcare data at our

disposal. In a real-world clinical or insurance setting, we would attempt to incorporate

all kinds of available data. Given the academic goals of the present work, however, it is

appropriate to focus solely on medical codes.

The structure of this chapter is as follows. We first survey related work, and then

describe our particular datasets. We next detail the various experiments that we performed,

and present the results. We follow with a discussion of the experimental results, and finish

the chapter with some concluding remarks.

4.2 Related Work

The use of statistical models and machine learning algorithms for predictive tasks in health-

care is well established in the literature. For the task of disease prediction, two especially

popular techniques are logistic regression and the Cox proportional hazards model. For ex-

ample, Echouffo-Tcheugui et al. [38] review 30 CKD risk models found in the literature since

the 1980s, each of which is either based on logistic regression or Cox proportional hazards.

Further examples are found in [39], [40], [41], [42], and [43].

Researchers have also used other machine learning methods for disease prediction. Cruz

44



www.manaraa.com

et al. [17] give an overview of a few machine learning techniques used for cancer prognosis,

including decision trees, neural networks, and nearest neighbor classifiers. Conroy et al.

[44] build a Weibull hazards model on basic clinical and demographic data to predict risk

of cardiovascular disease. Khalilia et al. [19] use a random forest for disease prediction on

highly imbalanced data.

Topic modeling techniques based on LDA and its variants have been applied to a variety of

healthcare tasks in recent years. Researchers have used both freetext and coded medical data

in these efforts. Halpern et al. [10] investigate both supervised and unsupervised topic models

as a means of dimensionality reduction and feature extraction for clinical prediction tasks. In

particular, they train the models on emergency department nurse triage notes (freetext data)

and use the learned topic distributions to predict patient risk for developing sepsis and for

being admitted to the ICU. Perotte et al. [11] address the problem of automatically assigning

ICD-9 codes to patient discharge summaries using a supervised topic model with hierarchical

labels. Lehman et al. [45] train a topic model on UMLS codes extracted from unstructured

nurse notes for the purposes of predicting hospital mortality. They demonstrate that the

learned topic weights associated with a patient can improve traditional risk stratification

algorithms. Salleb et al. [12] use a topic model on freetext from EHRs for the purpose

of exploring issues related to infant colic. They hypothesize that the learned topics may

be useful in automatically flagging cases of infant colic from EHRs even when the keyword

“colic” is not present in the record. Luo et al. [46] apply topic modeling to ICD-10 codes for

purposes of summarizing clinical information and generating medical research hypotheses.

Researchers have also focused specifically on incorporating ICD-9 code data into predic-

tion algorithms. Sun et al. [47] develop a method to combine both knowledge and data

driven risk factors, including ICD-9 codes, in heart failure prediction. For each individual,

they map the ICD-9 codes to a BOW representation indicating the frequency of each code.

Singh et al. [48] utilize the hierarchical structure of ICD-9 codes to develop feature vector

representations of patients based on their ICD-9 codes. The four types of feature vectors

45



www.manaraa.com

presented are variants of the simple BOW representation of the code sequence. Tsui et al.

[49] use ICD-9 codes to develop an epidemic detection algorithm. It should be noted that in

this study, the ICD-9 codes are aggregated accross the population, so the predictive value of

ICD-9 codes at the individual level was not assessed. Davis et al. [50] develop a collaborative

filtering approach to disease prediction using ICD-9 codes.

Of particular note is recent work on developing more sophisticated disease progression

models. For example, Wang et al. [14] build an unsupervised model based on Markov

jump processes and Markov chains. The model infers a set of disease stages and associated

comorbidities, as well as the progression of these stages over time. Tangri et al. [51] focus

on the task of modelling the ways in which CKD progresses to end stage renal failure.

They model this progression using a sequence of Cox proportional hazards models. Finally,

Lipton et al. [52] use a RNN with a LSTM recurrent layer to predict which diagnosis codes

are assigned to health episodes.

Our present work distinguishes itself from the literature by focusing on the use of past

medical code sequences for future disease prediction, and by comparing various machine

learning methods head-to-head on this task.

4.3 Data

We perform our experiments on two healthcare datasets from different regions in the United

States. We refer to these two datasets as D1 and D2, respectively. These datasets contain,

among other things, insurance claims records for a number of people over the span of several

years. They also indicate the insurance enrollment status of each person throughout this

interval, so that we can determine whether someone is continuously covered by the insurance,

or has gaps in his coverage. This is important, since we do not observe any insurance claims

data for an individual during periods of no coverage, and therefore we have no way of knowing

whether the individual was diagnosed with some target disease during that time. We note

that D1 is considerably larger than D2.

46



www.manaraa.com

For each dataset, after fixing the length of the observation period No and the followup

time Nf (both in years), as well as the type of coded data to use (whether diagnosis codes,

procedure codes, drug codes, or all of the above) and the target disease, we construct a

prepared dataset as follows:

� for each person in the dataset:

• if the person has a continuous insurance enrollment period of at least No + Nf

consecutive years:

∗ record the codes that occur in the first No years of the first continuous en-

rollment period (the observation period);

∗ if the person was diagnosed with the target disease before the end of the

observation period, leave this person out;

∗ if the person was first diagnosed with the target disease within Nf years of

the end of the observation period (the followup time), set the target variable

equal to 1;

∗ if the person was not diagnosed with the target disease at any point before

the followup time, set the target variable equal to 0.

• otherwise:

∗ leave this person out.

We carried out this process for the target diseases CKD and DM. The ICD-9 diagnosis codes

used to determine target disease diagnosis for both of these diseases are given in Table 4.1

The resulting data allow us to address the following question: given the medical codes for an

undiagnosed individual collected during an observation period of No years, can we predict

whether this person will be diagnosed with the target disease during the followup period of

Nf years?

47



www.manaraa.com

Target Disease ICD-9 Codes

Chronic Kidney Disease (CKD) 403.x, 404.x, 582.x, 583.x, 585.x, 586.x, 588.0
Diabetes Mellitus (DM) 250.x0, 250.x2

Table 4.1: ICD-9 codes associated with CKD and DM.

4.4 Disease Prediction Experiments

In this section, we describe the various experiments we performed and report their results.

4.4.1 E1: Finding the Best Classifier. In this experiment, we use D1 with only ICD-9

diagnosis codes to train and evaluate several different classifiers using a variety of different

data representations. We predict both CKD and DM, with No ∈ {1, 2} and Nf = 2.

For each target disease, we randomly partition the prepared dataset into a training set

(50%), validation set (25%), and test set (25%). We do so in a stratified manner, so that

the proportion of diseased to non-diseased cases is the same in all three sets. The validation

set is used for hyperparameter optimization as follows: for each family of classifiers that we

consider, there may be a set of options over which we wish to optimize, such as the type

and weight of the regularization term in logistic regression, the number of trees in a random

forest, the window size for feature functions in a conditional random field, or the sizes of

the layers in a recurrent neural network. We call these options hyperparameters. For each

hyperparameter setting under consideration, we train the classifier on the training set and

then test its performance on the validation set. The hyperparameter setting and trained

classifier which correspond to the best validation performance are retained, and we finally

evaluate and report the performance of just this classifier on the test set.

We now list the classifiers and data representations that we include in the experiment,

along with the hyperparameter sets over which we optimize.

LR Models. We train logistic regression classifiers using three data representations: the

simple BOW representation (LR+BOW), the lower-dimensional representation given by the

CCS mapping (LR+CCS), and the LDA topic distribution representation (LR+LDA). In

each of these three cases, we include an L2 penalty term and we optimize the penalty weight

48



www.manaraa.com

C over the set {0.1, 0.5, 1.0, 5.0}. For LR+LDA, we additionally optimize the number of

topics in the LDA model over the set {10, 30, 50, 100}.
RF Models. We train random forest classifiers using the same three data representations

as with logistic regression, and we employ similar notation to indicate each of these data

representations paired with random forest: RF+BOW, RF+CCS, and RF+LDA. In each of

these cases, we optimize the number of trees in the forest over the set {50, 100, 250, 500}. As
before, in the case of RF+LDA, we additionally optimize the number of topics over the set

{10, 30, 50, 100}.
CRF Models. We train conditional random fields using window features consisting of

both the ICD-9 codes and the CCS groupings, plus a bias term. We optimize the window

size over the set {0, 1, 3}.
RNN Models. We train recurrent neural networks using both one-hot encoded ICD-9

code sequences (RNN) and one-hot encoded CCS symbolic sequences (RNN+CCS). The

network architecture consists of an input layer, a GRU recurrent layer, a dense feedforward

layer, and a 2-dimensional softmax output layer. We train using the cross-entropy loss

function and two training epochs. We optimize the number of neurons in both the recurrent

layer and the feedforward layer over the set {128, 256}.
The AUC scores for each method are listed in Table 4.2. The ROC curves of the best

LR, RF, CRF, and RNN models are displayed in Figure 4.1. The hyperparameters of the

best models for each disease and each instantiation of No are given in Table 4.3.

4.4.2 E2: Inter-population Prediction. In this experiment, we train a classifier on

D1 and test it on D2, and vice versa, again only using ICD-9 diagnosis codes. We prep both

datasets using No = 1 and Nf = 2. We use the RNN+CCS method with recurrent and

feedforward layers both of size 256, and we train using two epochs. Results are given in

Figure 4.2 and Table 4.4.

49



www.manaraa.com

Disease Method AUC (No = 1, Nf = 2) AUC (No = 2, Nf = 2)

CKD

LR+BOW 0.745 0.701
LR+CCS 0.773 0.767
LR+LDA 0.776 0.801
RF+BOW 0.755 0.784
RF+CCS 0.756 0.813
RF+LDA 0.737 0.776

CRF 0.590 0.617
RNN 0.798 0.823

RNN+CCS 0.812 0.842

DM

LR+BOW 0.741 0.716
LR+CCS 0.769 0.784
LR+LDA 0.757 0.766
RF+BOW 0.714 0.756
RF+CCS 0.714 0.753
RF+LDA 0.694 0.737

CRF 0.649 0.582
RNN 0.789 0.778

RNN+CCS 0.792 0.803

Table 4.2: E1 results. The AUC scores of various models for the disease prediction task
using only ICD-9 diagnosis code data.

4.4.3 E3: Predicting over Variable Followup Periods. In this experiment, we vary

Nf over the set {1, 2, 3, 4, 5, 6} to investigate how prediction performance changes as we

increase the length of the followup period. We use D1 with all coded data (diagnosis,

procedure, and drug codes), and set No = 2. We use the RNN+CCS method with 256

neurons in the feedforward layer and 128 neurons in the recurrent layer. We create a stratified

random partition of the data into a training set (75%) and test set (25%), and we train with

two epochs. We report the AUC scores for each disease and each followup time Nf in Table

4.5 and Figure 4.3.

4.5 Discussion

We now discuss the results of the experiments detailed in the previous section.

50



www.manaraa.com

Figure 4.1: E1 results. ROC curves for best LR, RF, CRF, and RNN classifiers.

4.5.1 E1 Discussion. As far as the AUC score metric is concerned, the clear winner

among all the classifiers tested is the recurrent neural network trained on the CCS represen-

tation of the ICD-9 code sequences. This is true for both CKD and DM, and for both one-

and two-year long observation periods. Interestingly, the advantage of the RNN approach

over the others is more pronounced for CKD prediction than for DM prediction. The best-

performing RNN classifiers all had feedforward layers of size 256. This suggests that perhaps

further gains can be achieved by increasing the number of neurons in that layer. The optimal

number of neurons in the recurrent layer, however, was sometimes 128 and sometimes 256.

This suggests that increasing the size of the recurrent layer may not be beneficial. Of course,

one could experiment with all sorts of different – and deeper – RNN architectures.

51



www.manaraa.com

Disease Hyperparameters (No = 1) Hyperparameters (No = 2)

CKD
method: RNN+CCS method: RNN+CCS
feedforward layer size: 256 feedforward layer size: 256
recurrent layer size: 256 recurrent layer size: 128

DM
method: RNN+CCS method: RNN+CCS
feedforward layer size: 256 feedforward layer size: 256
recurrent layer size: 128 recurrent layer size: 256

Table 4.3: E1 results. Hyperparameters for the best classifiers.

(a) CKD (b) DM

Figure 4.2: E2 results. Performance of RNN+CCS classifier in the inter-population predic-
tion experiment for both CKD and DM.

The LR classifiers generally outperformed the RF classifiers, although not in every case.

This result is somewhat surprising, since random forest classifiers can approximate linear

classifiers, but are in general capable of learning much more complex decision boundaries.

Perhaps the RF classifiers in this case are suffering either from overfitting or from the im-

balance problem in the data.

The clear loser is the CRF classifier, with AUC scores that are lower than all the others

by quite a margin. This suggests that the window features may not be effective for disease

prediction, or possibly that the model is simply not suitable as a whole. A next step would

be to test a hidden CRF, which is more tailored for the sequence classification task.

The logistic regression models trained fastest, followed by random forest, conditional

random field, and then recurrent neural network. Using the LDA data representation added

on additional training time for LR and RF when used. Thus, even though the RNN classifiers

52



www.manaraa.com

Tested on D1 Tested on D2

CKD 0.765 0.778
DM 0.653 0.732

Table 4.4: E2 results. AUC scores for RNN+CCS classifier in the inter-population prediction
experiment for both CKD and DM.

Figure 4.3: E3 results. AUC scores for CKD and DM over several followup times.

have the best AUC scores, they have the downside of longer training time. This fact alone

may partly explain the superiority of the RNN models; they were allowed to perform more

computation when fitting to the data.

As far as data representation goes, the results of this experiment indicate that the CCS

representation of the ICD-9 diagnosis codes is preferable to the plain codes. This suggests

that the CCS grouping is an effective dimensionality reduction technique. The LDA rep-

resentation has a mixed showing; it is sometimes better than the plain codes, but usually

worse than the CCS representation, except for one case (compare LR+LDA and LR+CCS

on the CKD prediction task with No = Nf = 2). We can’t conclude, then, that the LDA

dimensionality reduction technique is particularly effective. Given the extra training time

53



www.manaraa.com

Disease Nf = 1 Nf = 2 Nf = 3 Nf = 4 Nf = 5 Nf = 6

CKD 0.857 0.901 0.868 0.870 0.875 0.864
DM 0.817 0.820 0.817 0.838 0.836 0.839

Table 4.5: E3 results. AUC scores for the RNN+CCS classifier over a variety of followup
periods.

required in LDA, we don’t see a compelling reason to use it for disease prediction models.

We also note that there is generally, although not always, an increase in performance

when using two years of observed data (No = 2) rather than just one year. This makes

sense, as having a more complete picture of one’s health history should only aid in disease

prediction. On the other hand, it is reasonable to assume that the most relevant part of

one’s health history is usually the most recent part, and so there may be a point at which

increasing No no longer yields better predictive performance.

Finally, we note that the CKD prediction task generally yields better AUC scores than

the DM prediction task. It would be interesting to determine if doctors find CKD prognosis

easier than DM prognosis.

4.5.2 E2 Discussion. The results of E2 show that while classifiers do offer some perfor-

mance when classifying data from a different population than the training set, the perfor-

mance is decidedly lower than what is achieved on the original population. The populations

in D1 and D2 differ in important ways, many of which are due to differences in geographical

location. For example, someone living in a rural part of the East Coast will face a different

set of health challenges and lead a different kind of life than someone in an urban center in

the Midwest. Further, medical coding practices may differ from one hospital system to the

next. All this is to say that while there are broad patterns and structure shared by both D1

and D2, there are invariably differences in pattern and statistical structure between the two

datasets.

Another factor that may account for the diminished performance of the classifiers in this

experiment is the small size of D2. Overfitting and small-sample bias may be at play here.

54



www.manaraa.com

4.5.3 E3 Discussion. The results of E3 highlight two important things. Firstly, incor-

porating all coded data, including drug and procedure codes, boosts the performance of the

classifier by an appreciable amount. For CKD, the AUC score of the RNN+CCS classifier

with No = Nf = 2 increases from 0.842 to 0.901 when including the additional codes. For

DM, the AUC score increases from 0.803 to 0.820. Thus, we conclude that all three types of

medical code data have useful and at least partially complementary predictive value.

Second, we note that the AUC scores remain fairly stable as Nf increases from one to

six years. This suggests that we can reliably predict disease occurrence over relatively long

periods of time. For both CKD and DM, we do observe an increase in AUC score fromNf = 1

to Nf = 2. This may in part be due to the relatively large increase in the number of positive

cases (diseased people) in the dataset when changing the followup time. In particular, the

data imbalance problem is substantially reduced when increasing the followup time from one

year to two years.

4.6 Conclusion

The results of our experiments show that an individual’s history of medical codes can be

successfully harnessed for disease prediction. Further, we conclude that modeling the full

sequential nature of these data rather than collapsing them to their BOW representation can

lead to better predictive performance. Additionally, the CCS grouping on ICD-9 diagnosis

codes is a useful and easy means of dimensionality reduction. We observe that simple recur-

rent neural networks with GRU recurrent layers already provide a rather effective solution

to the problem, while logistic regression classifiers provide a very simple, albeit somewhat

less accurate, baseline.

There are several directions for future work. We only investigated a very rudimentary

RNN architecture, and didn’t attempt to employ many of the tricks of the trade out there

that can improve training time and performance of neural networks. It is likely that different

learning algorithms, activation functions, and deeper architectures (i.e. more layers) will lead

55



www.manaraa.com

to better classifiers. Unfortunately, there is very little by way of robust theory that can guide

the development of more effective RNNs at the moment. Nevertheless, one is bound to find

improvements given enough experimentation.

Another direction for future work is to develop methods of incorporating additional types

of data into the classifier, such as demographic and clinical data. By and large, this shouldn’t

be an extremely difficult task. However, there may be clever ways to model the interactions

between the different data types in a manner that both improves prediction performance

and yields clinical insight. Further, there may be better ways of utilizing the code sequences.

One could include the time elapsed between successive codes, for example, to capture more

of the fine-grained timing.

Finally, just predicting if someone will get a disease within a certain period of time

might not be good enough. Predicting when the disease is likely to occur can facilitate more

targeted and effective preventive care and early treatment. The task of predicting when

an event will occur is generally known as survival analysis. Developing survival analysis

models using the same type of medical code sequence data considered in this work would be

a valuable next step.

56



www.manaraa.com

Bibliography

[1] David Squires and Chloe Anderson. U.s. health care from a global perspective: Spend-
ing, use of services, prices, and health in 13 countries. 2015.

[2] Joachim O Hero, Robert J Blendon, Alan M Zaslavsky, and Andrea L Campbell. Un-
derstanding what makes americans dissatisfied with their health care system: An inter-
national comparison. Health Affairs, 35(3):502–509, 2016.

[3] Harald Schmidt. Chronic disease prevention and health promotion. In Public Health
Ethics: Cases Spanning the Globe, pages 137–176. Springer, 2016.

[4] Chronic disease overview. http://www.cdc.gov/chronicdisease/overview/. Ac-
cessed: 2016-06-14.

[5] Age-Adjusted Prevalence. National chronic kidney disease fact sheet, 2014.

[6] Centers for Disease Control, Prevention (CDC), Centers for Disease Control, Prevention
(CDC), et al. National diabetes fact sheet: national estimates and general information
on diabetes and prediabetes in the united states, 2011. Atlanta, GA: US Department
of Health and Human Services, Centers for Disease Control and Prevention, 201, 2011.

[7] World Health Organization et al. International classification of diseases:[9th] ninth
revision, basic tabulation list with alphabetic index. 1978.

[8] Healthcare Cost, Utilization Project, et al. Clinical classifications software (ccs) for icd-
9-cm. Available at: www. hcup-us. ahrq. gov/toolssoftware/ccs/ccs. jsp. Accessed May,
11, 2011.

[9] Nips 2015 workshop on machine learning in healthcare. https://sites.google.com/
site/nipsmlhc15/. Accessed: 2016-06-14.

[10] Yoni Halpern, Steven Horng, Larry A Nathanson, Nathan I Shapiro, and David Sontag.
A comparison of dimensionality reduction techniques for unstructured clinical text. In
ICML 2012 Workshop on Clinical Data Analysis, 2012.

[11] Adler J Perotte, Frank Wood, Noemie Elhadad, and Nicholas Bartlett. Hierarchically
supervised latent dirichlet allocation. In Advances in Neural Information Processing
Systems, pages 2609–2617, 2011.

[12] Ansaf Salleb-Aouissi, Axinia Radeva, R Passonneau, A Tomar, D Waltz, et al. Diving
into a large corpus of pediatric notes. Proc. ICMLWorkshop on Learning from Unstruc-
tured Clinical Text, 2011.

[13] Dina Demner-Fushman, Wendy W Chapman, and Clement J McDonald. What can
natural language processing do for clinical decision support? Journal of biomedical
informatics, 42(5):760–772, 2009.

57



www.manaraa.com

[14] Xiang Wang, David Sontag, and Fei Wang. Unsupervised learning of disease progres-
sion models. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 85–94. ACM, 2014.

[15] Rafid Sukkar, Bradley Wyman, Elyse Katz, Yanwei Zhang, and David Raunig. Modeling
alzheimer’s disease progression using hidden markov models. Alzheimer’s & Dementia,
7(4):S147, 2011.

[16] M Ohlsson, C Peterson, and M Dictor. Using hidden markov models to characterize
disease trajectories. In Proceeding of the neural networks and expert systems in medicine
and healthcare conference, pages 324–326, 2001.

[17] Joseph A Cruz and David S Wishart. Applications of machine learning in cancer pre-
diction and prognosis. Cancer informatics, 2:59, 2006.

[18] Chao Chen, Andy Liaw, and Leo Breiman. Using random forest to learn imbalanced
data. University of California, Berkeley, 2004.

[19] Mohammed Khalilia, Sounak Chakraborty, and Mihail Popescu. Predicting disease
risks from highly imbalanced data using random forest. BMC medical informatics and
decision making, 11(1):1, 2011.

[20] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and Alessandro
Verri. Are loss functions all the same? Neural Computation, 16(5):1063–1076, 2004.

[21] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, informed-
ness, markedness and correlation. 2011.

[22] Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In
Proceedings of the twenty-first international conference on Machine learning, page 78.
ACM, 2004.

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[24] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. Unbiased recursive partitioning: A
conditional inference framework. Journal of Computational and Graphical statistics,
15(3):651–674, 2006.

[25] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[26] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Ma-
chine learning, 63(1):3–42, 2006.

[27] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[28] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. the
Journal of machine Learning research, 3:993–1022, 2003.

58



www.manaraa.com

[29] Thomas G Dietterich. Machine learning for sequential data: A review. In Structural,
syntactic, and statistical pattern recognition, pages 15–30. Springer, 2002.

[30] Nam Nguyen and Yunsong Guo. Comparisons of sequence labeling algorithms and
extensions. In Proceedings of the 24th international conference on Machine learning,
pages 681–688. ACM, 2007.

[31] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[32] Charles Sutton and Andrew McCallum. An introduction to conditional random fields.
Machine Learning, 4(4):267–373, 2011.

[33] Ariadna Quattoni, Sybor Wang, Louis-Philippe Morency, Michael Collins, and Trevor
Darrell. Hidden conditional random fields. IEEE Transactions on Pattern Analysis &
Machine Intelligence, (10):1848–1852, 2007.

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[35] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[36] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[37] Recurrent neural networks. http://people.idsia.ch/~juergen/rnn.html. Accessed:
2016-06-15.

[38] Justin B Echouffo-Tcheugui and Andre P Kengne. Risk models to predict chronic kidney
disease and its progression: a systematic review. PLoS medicine, 9(11):e1001344, 2012.

[39] Heejung Bang, Suma Vupputuri, David A Shoham, Philip J Klemmer, Ronald J Falk,
Madhu Mazumdar, Debbie Gipson, Romulo E Colindres, and Abhijit V Kshirsagar.
Screening for occult renal disease (scored): a simple prediction model for chronic kidney
disease. Archives of internal medicine, 167(4):374–381, 2007.

[40] Julia Hippisley-Cox and Carol Coupland. Predicting the risk of chronic kidney disease
in men and women in england and wales: prospective derivation and external validation
of the qkidney R© scores. BMC family practice, 11(1):49, 2010.

[41] Kuo-Liong Chien, Hung-Ju Lin, Bai-Chin Lee, Hsiu-Ching Hsu, Yuan-Teh Lee, and
Ming-Fong Chen. A prediction model for the risk of incident chronic kidney disease.
The American journal of medicine, 123(9):836–846, 2010.

[42] Maria Inês Schmidt, Bruce B Duncan, Heejung Bang, James S Pankow, Christie M
Ballantyne, Sherita H Golden, Aaron R Folsom, and Lloyd E Chambless. Identify-
ing individuals at high risk for diabetes the atherosclerosis risk in communities study.
Diabetes care, 28(8):2013–2018, 2005.

59



www.manaraa.com

[43] Abhijit V Kshirsagar, Heejung Bang, Andrew S Bomback, Suma Vupputuri, David A
Shoham, Lisa M Kern, Philip J Klemmer, Madhu Mazumdar, and Phyllis A August.
A simple algorithm to predict incident kidney disease. Archives of internal medicine,
168(22):2466–2473, 2008.

[44] RM1 Conroy, K Pyörälä, AP el Fitzgerald, S Sans, A Menotti, Gui De Backer, Dirk
De Bacquer, P Ducimetiere, P Jousilahti, U Keil, et al. Estimation of ten-year risk
of fatal cardiovascular disease in europe: the score project. European heart journal,
24(11):987–1003, 2003.

[45] Li-wei Lehman, Mohammed Saeed, William Long, Joon Lee, and Roger Mark. Risk
stratification of icu patients using topic models inferred from unstructured progress
notes. In AMIA Annual Symposium Proceedings, volume 2012, page 505. American
Medical Informatics Association, 2012.

[46] Wei Luo, Dinh Phung, Vu Nguyen, Truyen Tran, and Svetha Venkatesh. Speed up
health research through topic modeling of coded clinical data.

[47] Jimeng Sun, Jianying Hu, Dijun Luo, Marianthi Markatou, Fei Wang, Shahram Edabol-
lahi, et al. Combining knowledge and data driven insights for identifying risk factors
using electronic health records. American Medical Informatics Association, 2012.

[48] Anima Singh, Girish Nadkarni, John Guttag, and Erwin Bottinger. Leveraging hierarchy
in medical codes for predictive modeling. In Proceedings of the 5th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics, pages 96–103. ACM,
2014.

[49] Fu-Chiang Tsui, Michael MWagner, Virginia Dato, and CC Chang. Value of icd-9 coded
chief complaints for detection of epidemics. In Proceedings of the AMIA Symposium,
page 711. American Medical Informatics Association, 2001.

[50] Darcy A Davis, Nitesh V Chawla, Nicholas A Christakis, and Albert-László Barabási.
Time to care: a collaborative engine for practical disease prediction. Data Mining and
Knowledge Discovery, 20(3):388–415, 2010.

[51] Navdeep Tangri, Lesley A Stevens, John Griffith, Hocine Tighiouart, Ognjenka Djur-
djev, David Naimark, Adeera Levin, and Andrew S Levey. A predictive model for
progression of chronic kidney disease to kidney failure. Jama, 305(15):1553–1559, 2011.

[52] Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzell. Learning to
diagnose with lstm recurrent neural networks. arXiv preprint arXiv:1511.03677, 2015.

60


	Brigham Young University
	BYU ScholarsArchive
	2016-06-01

	Machine Learning for Disease Prediction
	Abraham Jacob Frandsen
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Healthcare, Data, Analysis
	1.1 Introduction
	1.2 Medical Data
	1.3 Machine Learning in Healthcare

	2 Classification
	2.1 Introduction
	2.2 Linear Classifiers
	2.3 Training
	2.4 Testing
	2.5 Regularization
	2.6 Logistic Regression
	2.7 Decision Trees and Random Forests

	3 Sequence Data
	3.1 Introduction
	3.2 Data Representation
	3.3 Sequence Learning

	4 Experiments
	4.1 Introduction
	4.2 Related Work
	4.3 Data
	4.4 Disease Prediction Experiments
	4.5 Discussion
	4.6 Conclusion

	Bibliography

